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TECHNICAL NOTE 4125

HEAT TRANSFER AND RECOVERY TEMPERATURES ON A SPHERE WITH
LAMINAR, TRANSITIONAL, AND TURBULENT BOUNDARY LAYERS
AT MACH NUMBERS OF 2,00 AND 4.15

By Ivan E. Beckwith and James J. Gallagher
SUMMARY

An Investigatlion was made of the pressure and equllibrium-temperature
distributions on a sphere at Mach numbers of 2.00 and 4.15. The local
serodynamic heat transfer was also measured on a sphere at a Mach number
of 2.00 and on a hemisphere-cylinder at a Mach number of 4.15. The

Reynolds number range for these tests was from 1.5 X 106 to 8.1 X 106,
based on free-stream conditions and the diameter of the spheres.

Meagured equilibrium-temperature distributions over the forward part
of the sphere agreed with & laminar theory at the lower Reynolds numbers
and with a turbulent theory at the higher Reynolds numbers for both Mach
numbers. At a Mach number of 2,00 the recovery temperatures in the
separated-flow region decreased slightly with increasing Reynolds number.

Heat-transfer measurements at the stagnaflon point made at both Mach
numbers agreed with leminer theory. At a Mach number of 2.00 transition
to turbulent flow occurred at sbout 20° from the stagnation point. The
heat-transfer coefficlents in the turbulent boundery layer were in rea-
sonably good agreement with & simple theory for this case. Similar
results were obtained at & Mach number of 4.15 except that transition
occurred farther back on the nose and, at the lower Reynolds numbers,
the flow was laminar over the entire hemisphere. At Mach number 2.00
the heat-transfer coefficients in the separsted-flow reglon were about
12 percent of the peak velues on the front part of the sphere.

INTRODUCTION

The serodynemlc characteristics of blunt bodies at supersonlc speeds
have received considerable study in recent yesrs. One of the principal
reasons for this incressed interest is the large reduction in local tem-
perature that may be obtained by blunting the nose of a body. The
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temperatures on the surface of & blunt nose are generally less than those
on & sharp nose at given stream conditions hecause of the smaller aero-
dynamic heat-transfer rates, the increased heat-storage cepaclty, and the
increased rate of heat removal by conduction in the blunt nose.

Several experimental and theoretical investigations of the sero-
dynamic heat-transfer characteristics of hemispherical noses or blunt
bodies at supersonic speeds are reported in references 1 to 9. Most of
the experimental data of these investigations were obtained at relatively
small Reynolds numbers, and these date are generally found to be in rea-
gonable agreement with theoretical predictions for e laminar boundary
layer. Some measurements of the heat transfer in a turbulent boundary
layer are reported in reference 2; however, more deta are required before
general correlations or comparisons with theoretical calculetions for
turbulent heat transfer are possible.

The purpose of this report is to present addlitlional experimental data
on recovery temperatures and serodynamlc heat trensfer on spherical noses
with leminar, transitional, and turbulent boundary layers. The tests were
made at stream Mach numbers of 2,00 and 4.15 over a Reynolds number range
from 1.5 X 106 to 8.1 x 100, based on free-stream conditions end the diam-
eter of the spheres. The laminar and turbulent data are compared with
appropriate theorles. Heat transfer and recovery temperatures measured
on the back of spheres in the separated-flow region are also presented.

SYMBOLS o
Cp ~ pressure coefficient -
Cn specific heat of model material _ -
Cp specific heat of air at constant pressure
D . dlameter of model - -
e emissivity
F function of wall thickness and tehiperature distribution
(eq. (5))
H heat-transfer parameter, ————EEE———
o e

Hoo
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h heat-transfer coefficlent, S
Tp - Ty
k thermel conductivity
1 radius of heat-meter flange
Iy = Zﬁ + Width of air gaep around plug
radius of heat-meter plug
M Mach number
Nyu Nusselt number, %ﬁ
c

Npp Prandtl number, —%ﬁ
P pressure
Q total heat flow rate
a heat flow rate per unit area

U,.D
Rp wall Reynolds number, Pu e

B X
Ry locel wall Reynolds number, m
W

p..U.

R, stream Reynolds number, — o
[}
r radius of model
Ty + 7T

Tav average radius of model wall, —E—E——i
T temperature
Te equilibrium temperature (%E— = Cﬁ
T recovery temperature (qw = O)
Tref reference temperature for radiation, taken as temperature of

tunnel walls

t time
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Uy velocity shead of bow shock
u local veloclty
ug ¥ dimensionless veloclity gradient at stagnation point,
duy; p
(az_ U x=0
W specific welght of model material
b4 longitudinal distance around models from stagnation point
Yy normsl distance from surface
5] boundary~layer thickness
5% displacement thickness of boundery layer, \/;5(1 - 35%1>dy
5 flange thickness (see appendix)
7 recovery factor, defined by equation (10)
e anguler distance around models measured from stagnation point
in spherical polar coordinate system
g% momentum thickness of boundsry leyer, u/‘s EEE-(} - %})dy
0 171 1
K dynamic viscosity
o) mess density
¢ Stefan-Boltzmenn constant, 0.173 X 10~8 Btu/(hr) (fta)(oRL’)
T shesar stress
¢ axisymmetric coordinete on models in spherical polar coordlnate
system
X independent variable in heat-conduction equetion for flange
Subscripts:

A,B two geometrically similer models
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c constantan

f heat-meter flange

1 inside surface of model

m material used in model

0 stagnation point

P outside surface of heat-meter plug

8 separstion point

st stainless steel

T location of transition

t total

W outside wall of model

@ at infinity or ahead of bow shock

1 local value just outside boundery layer (unless otherwise
noted)

2 reference point teken at 6 = 90° (unless otherwise noted)

A bar over a symbol indicates the ratio of any temperature to stagna-
tlon temperature.

A prime denotes values indicated by & heat meter.

APPARATUS

Description of Tunnels

This investigation of pressure distributions and heat-transfer
characteristics on spheres was conducted in three of the blowdown Jets
in the Gas Dynamics Branch of the langley Aeronautical Laboratory. These
Jets exhaust to atmospheric pressure and are supplied with air which is
stored in a tank field at a maximum pressure of 5,000 pounds per square
inch and a specific humidity of less than 1 part of water per million
parts of air by weight. The ailr is reduced in pressure by automatic
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regulators to the desired stagnation pressure, which can be held con-
stant to within l/é percent. The stagnation temperature wes also auto-
matically regulated so that the maximum varlation of this temperature
with time was 1° F per minute. Pertinent information sbout the three
blowdown Jets used and the range of operating conditions available for
the tests 1s given in the followlng table:

Varigble Mach
number closed| M = 4 jet
Jet

M=2
open jet

Stagnation pressure,

lb/sq In. 8882 « ¢« ¢« ¢« + o & 90 to 140 20 to 140 220 to 500

Stagnation temperature, °F . . 120 to 680] 100 to 130 | 120 to 320

Test-gsectlion Mach number . . . .}2.00 + 0.02| 2.00 £ 0.03 [4.15 + 0.03
Reynolds number per foot . . . .| 8.5x 10®] 7.0 x 106 | 12.1 x 106
to to to 6

33.0 x 100| 33.0 x 10 | 44.0 x 10

Test-section size,
width by height, in. . . « . 9 by 9 9 by 9 12 by 13

Type of diffuser « ¢« « o o o o & None Fixed Fixed

Models and Instrumentation

Pregsure~distribution model.- The model used to obtain the pressure
distributions was a 3%-—inch-diameter sphere supported by & %-inch-

diameter sting. A sketch of this model is not shown since the shape and
glze of the model and its sting support are the same as those of the copper
heat-transfer model shown in figure 1(a). The pressure-distribution model
was constructed of stainless steel and was provided with 35 pressure
orifices installed along one longitudinal line at intervals of 5° from

8 = -10° to 6 = 160°. The diameter of the orifices was 0.02 inch.

Mercury mesnometers were used for all pressures below 50 pounds per
square inch gage, and Bourdon gages were udged for pressures greater than
this wvalue.

Equilibrium~temperature models.- The models used to obtain the
equilibrium temperatures were thin-shell spheres made of Inconel. Two
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models of different wall thickness were used. One model was 3 inches
in diameter with a wall thickness of 1/8 inech and was used to obtain
equilibrium-temperature data at Mach number 4.15 only. This same model

was subsequently machined to a diameter of 2% inches, which resulted in

s wall thickness of 1/16 inch. This latter model was then used to obtain
additional equilibrium-temperature data at Mach number 4.15 in order to
investigate the effect of wall thickness on the measured equilibrium

temperatures. The 2%-inch-diameter Inconel model was also used to

measure equlilibrium temperatures at Mach number 2.00. A sketch of the
3-inch-diameter model asnd its sting support is shown in figure 1(b)
together with the location and method of installetion of the 32 lron-
constanten thermocouples in the sphere shell.

The temperatures were recorded on self-balancing potentiometers., A
manual switching system was used so that all the model temperatures as
well as the stagnation temperature of the air could be recorded on a
single instrument. The accuracy of the potentiometers used was l/h per-
cent of full-scale deflection which was 200C F for the tests at Mach
number 2 and 330° F for the tests at Mach number k4.

Isothermal heat-transfer model.- The isothermel heat-transfer model
was a relatively thick-shell sphere made of electrolytic pure copper.

The model was 3% inches in diameter and had a 0.3-inch-thick wall which

remained essentially isothermal even for large hest-transfer rates because
of the large thermal conductivity of copper. A sketch of the model, the
sting support, and thermocouple installation is shown in figure 1(a). The
thermocouples consisted of single constantan wires soldered at various
locations on the model and a common heavy copper wire soldered at ome
point on the inside surface. As indicated in figure 1(a), 35 thermo-
couples were installed at 5° intervals along one longitudinal line with
the copper-constantan Jjunction located approximately 0.05 inch from the
outside surface. Also, four thermocouples were attached to the inside
surface at intervals of h5°. The model was chromium plated to reduce
surface gbrasion during the tests. The thickness of the chromium plating
was gpproximately 0.0002 inch.

The temperature-time history of this model was obtained from a
36-channel recording oscillograph which has elements with a sensitivity
of 12.8 microamperes per inch of deflection. Full-scale deflection was

about l% inches, which corresponded to & temperature change of 250o F.
An accuracy 1in absolute tempersture of 1° F was obtained by individually

calibrating the galvanometer elements before each test. The relative
temperatures from any one chammel were accurate to within il/ho F, The
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stagnation temperature wes obtained from self-balancing recording poten- v
tiometers with an accuracy of 1/4h percent of full-scale deflection. Two

instruments were used with ranges of O° F to 600° F and 0° F to 1,2000 F i _
depending upon the range of the tests.

Hemisphere-cylinder heat-transfer model,- The hemisphere-cylinder
model was 2 inches in diameter and had a wall thickness of 0,110 inch.
The model was mede of stainless steel and was instrumented with T plug-
type heat meters and 10 copper-constantan thermocouples. The location
of the thermocouples and heat meters and the construction of the heat
meters are shown in figure 1(c). The meters were fabricated by first
tinning the contact surfaces of the stainless steel and constantan with
0.0015 inch of silver solder and, then, heating the assembly under pres-
sure to meke the Jjoints as thin as possible. ' The meters or plugs were
then silver sgoldered into the model with a lower temperature solder and
a final machining cut was made on the whole model. A flange that was
0.006 inch to 0.012 inch thick held the meters in place. The air space
was sealed at the inside surface with insulating cement and the stainless-
steel wires were spot welded to the meter and model.

The outside thermocouples were installed with the junction very near
the surface, This instaellation was sccomplished by first costing the
bare thermocouple wires with a heat-resistant insulating paint. The ,'
individual wires were then inserted in separate holes drilled normal to -
the surface and spaced 0.1 inch apart, as indicated in figure 1(c). The
ends of the wires were cut off flush with the outside surface and dressed
down smooth. The thermoelectric circuit was then completed by a very
thin film of silver solder applied over the outside surface area including
the two holes,

Heat-transfer date were obtained on this model by cooling it with
water at a constant flow rate and temperature until steady wall tempera-
tures were indicated. The electromotive force across the constantan disk
in the center of the heat meter 1s then proportional to the heat flow
raete through the plug. Application of a correction factor to this heat
flow rate gives the heat flow rate per unlt area at the outside surface.

The ocutput from the heat meters was amplified by a dlrect-current
amplifier which has six different sceles ranging from 50 microvolts to _
2,000 microvolts full-scale deflection. The output from the amplifier
was recorded on a self-balancing potentiometer. The overall accuracy of
the amplifier and recorder is 1/2 percent of full-scale deflection for
a steady input. _ _ N -
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TEST PROCEDURES AND DATA REDUCTION

Longitudinal heat conduction around the shells of the models and
heat transfer due to radiation were included whenever necessary in the
data reduction for the equilibrium-temperature models and the copper
heat-transfer model. The relation used in data reduction is derived
from the heat balsnce for an element of a spherical shell with small but
finite wall thickness Ar = r, - ry and volume royosin 6 df A6 Ar where
rgy 18 the average or mean radius of the shell. The aerodynamic heat-

transfer rate for an asxisymmetric temperature distribution and zero heat
transfer at the inside surface is then:

2
B Tav) or EefT(3%T . 1 dT ( I u)
q_w = wcm &'(ﬁ) E - rwa \892 <3 Ton © a—g) + ge TW = lyef

(1)

where in this equation T should be considered as an average temperature -
across the thickness Ar at any station 6. A similar expression for

the serodynamic heat transfer to a spherical shell 1s given in refer-

ence 8 where no restriction is imposed on the shell thickness but the
temperature derivatives with respect to time and © are assumed inde-
pendent of r. The temperature-time derivative term in the expression

of reference 8 is, therefore, different from the corresponding term in
equation (1). For the shell thickness and radius of the copper heat-
transfer model this term in equation (1) is sbout 0.7 percent smaller

than the exact value from reference 8.

A genersl procedure used in all the tests was to preheat the piping
and tunnel system up to & temperature epproximating the desired stagna-
tion temperature. This procedure insured that for the equilibrium-
temperature tests the heat-transfer rates due to radiation were small.
The thermsl properties of air were taken from reference 10.

Equilibrium and Recovery Temperatures

Thin-shell models.- The term "equilibrium temperature" is used to
denote the local messured temperature when or 0, and the term 'recovery

3t

temperature" is used for the local temperature that would be obtained when
the local value of gq; = O. Before any equilibrium-temperature data were
obtained, the tunnel was run at steady stagnation conditions for at least
5 minutes, and, as a result, the storage term of equation (1) was negli-

ible. In general, when of _ 0, g O but has some small finite value
g 2 at 2
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which is difficult to calculate accurately because the temperature deriv-
atives in equation (1) are difficult to evaluate accurately from experi-
mental data. The recovery temperatures may be obtained from the measured
equillbrium temperatures on two thin-shell models of different wall )
thicknesses (without computing g, from eq. (1)) by plotting the equi-
librium temperature ageinst waell thickness and extrapolating to zero
thickness. In general, the correct functional form of the variation of
equilibrium temperature with well thickness is unknown; however, a simple
linear extrapolation to zerc thlckness gives the recovery tempersture
with good accuracy es is shown by the following considerations.

If two thin-shell models, A and B, the same in every respect except
for wall thickness and dlameter, are tested in an alrstream at the same

Mach number M, and Reynolds number EEEQB .and at nearly the same temper-

2]
sture, then dimensional considerations require that at corresponding points

. on the two models
hD} _ [hD (2)
Eo/a  \Kw/B

The ratio of the local heat-transfer rates would then be

9w,A _ DB k0,4 Tw,a - Tr (3)
%, B DAkooB ,B = Ip

Solving this equation for T, and substituting from equation (1) for the
heat-transfer rates results in
— FA —
.8 7y " ek
B T

A
Fp .

(k)

rgl—III

where all tempersastures are made dimensionless_by dividing by the test

F
stagnetion temperature. The ratio FA is given by the equation
B -

(Ar ) <82T 1. §§>
%é - Dk, de2 tan-e 98 /4
B (.DE) (82'33 . aIJ; L gte[)')

(5)

de°

for the conditions of %% = 0 and negligible radiation.
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Th; percent error in recovery temperature due to an error in the
A

ratio == is
FE —
I
dTy - Tyw,B 1 d(fg) (6)
Tr Fp  Ty,a Fp _ B

FB TW’, B F-B

from equation (4) for given values of Tﬁ,A and Tﬁ,B- Equation (6) then

indicates that, for the conditions of Ty, p ~ Ty p and Fp # Fp, & rather
F
large error in the ratio FA can be tolerated without causing a corre-~
B
spondingly large error in recovery temperatures. Consequently, when
Dy~ Dg and k, g~ k, p, equation (5) mey be replaced by the approximate

expression

Fy, Ar
2 2 (7)
. Fp A4rp

since 1t follows from the conditions of fﬁ,A =~ EQ,B and the physical

similarity of the models that the tempersture derivates are also approxi-
mately equal. Substituting equation (7) into equation (&) results in the
approximate expression for the recovery temperature ratlo

_ vy

= NTW,B irp " T, A
—A_ 3
Arp

This expression shows that for thin-wall models the recovery temperature
is given by a linear extrapolation to zero thickness of the variation in
equilibrium temperature with wall thickness.

The radiastion term was computed for some typical tests and was found
to be less than 4 percent of the conduction term and, hence, was generally
neglected. The small value of the radistion term is due to the relatively
smell values of Ty and Tper &and, also, to the fact that these tempera-
tures were about the same because of the preheating before each test.
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The physical constants for the Inconel used in the data reduction o a
were kp = 8.5 Btu/(hr) (ft)(°F) and e = 0.2. The models were polished

between all tests.

Heat-meter model.- The aserodynamic heat-transfer rates were measured

directly on this model so that the recovery %empe%atures were obtalned by

o = iw
o

To - Tw = To B Tr

H = 0; that is, for. H =0, q, =0 and To T,

plotting H (proportional to qw) agalnst and extrapolating to

Transient Heat-Transfer Measurements

The serodynamlc heat transfer at Mach number 2.00 was obtained on the
thick-wall copper sphere by a transient method. In this method the heat-
storage or time~dependent term of equation (1) is usually the predominant
factor in calculating the aerodynamic heat transfer. The model was pro-
tected from the unsteady starting conditions in the jet by disposable
water-cooled covers. The covers consisted of double-walled hemispherical
shells which were fitted together with a leak-proof seal. After attaining
the desired steady conditions in the jet, a quick-release mechanism was -
actuated and the covers were blown off the model by the airstream. In ™
this way the model was meintained at a uniform temperature until the
covers were released. The data indicated that this initial temperature
distribution was uniform to within 2° F over. the entire region where
temperatures were mesasured.

The temperature variation with time at two points on the copper sphere
durlng & typical test is shown in figure 2(a). The complete temperature-
time history up to 1 second from time zero for the same test is shown in
figure 2(b). The initial temperature of the model for this test was 85° F
as indicated in the figures. The outslde temperatures were measured
approximately 0.05 inch from the outside surface (fig. 1(a)) and the
inside temperatures, denoted by the flagged symbols in figure 2(b), were
measured at the inside surface.

Figure 2(a) shows that the temperature derivatives with respect to
time at smell values of t depend on the radlal location. However, in
the derivation of equation (1), it is assumed implicitly that the temper-
ature derivatives are independent of the radial location. Consequently,
any temperature data for 0 <t < 0.3 were not used. L -

Figures 2(a) and 2(b) show that the temperature also varies consider-
ably with radial location. This variation indicates that small errors in
the depthwise location of the outgide thermocouples would csuse errors in L
the derivatives of T with respect to 6 required in equation (1). These
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errors were minimized by adjusting the time zero for each thermocouple
record according to the radial location of the thermocouple. This adjust-
ment was obtalned by disregarding the early part of the records (gener-
ally, t < 0.3 second) and extending the temperature-time curves backwards
to the initial temperature by using the same slope and curvature that

was found at the larger times (generally, +t > 0.3 second). This pro-
cedure is 1llustrated in figure 2(a) where the extended portions of the
curves are shown as dashed lines. The intersection of each extended curve
with the line for the initial temperature of the model was then taken as
the adjusted "time zero" for that particuler thermocouple location (this
adjusted time zero in fig. 2(a) is at -0.12 second for the outside thermo-
couple and 0.16 second for the inside thermocouple), and the temperatures
were then read again at the adjusted times. The result of using this pro-
cedure on the typical test of figures 2(a) and 2(b) is shown in figure 2(c).
The adjusted temperatures derived from the Inside thermocouples are now
about the same as the adjusted outside temperatures and some of the appsar-
ent irregularities in the temperature distributions of figure 2(b) have
been removed. This agreement indicates that the genersasl procedure Just
described is valid, and plots of the type of figure 2(c) were then used
to evaluate the derivatives of T with respect to 8 reguired in equa~
tion (1). No data at t > 0.6 second were used from this model because

of the increasing ratio of the conduction to storage terms at the larger
times. This limitation minimized the errors iavolved in evaluating the
conduction since the ratio of the conduction to storage terms was always
less than about 0.3 for + < 0.6 second. The heat transfer due to radia-
tion was found to be negligible as compared with the storage and conduc-
tion terms.

The physicsal constants for copper used in the data reduction were
W = 559 lb/cu ft, cp = 0.0915 Btu/(1b)(OF), k5 = 220 Btu/(hr)(ft)(°F),
and e = 0.5. The model was polished before each test.

Direct Measurement of Heat Transfer

A plug-type heat meter was used for the direct measurement of aero-
dynemic heat-transfer rates on the hemisphere-cylinder model which was
tested st Mach number 4.15. A general objection to the plug~type heat
meter has been that the plug may cause large perturbations in the local
wall temperatures of the model. These temperature perturbations in turn
cause disturbances In the local boundary-lsyer characteristics and, also,
may introduce extraneous heat-conduetion effects in the plug itself. The
heat meter and test procedure used in this investigation were designed to
minimize these effects. The model was cooled with large amounts of water
(about 100 pounds per minute) in the mammer indicated in figure 1(c) and,
thereby, a nearly uniform temperature was maintained at the inside sur-
face of the plugs and surrounding model wall. The outside temperatures
of the plug and surrounding model were alsc gbout the same because of the
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relatively thin wall and because the materials used in the plug (constan-
tan and stainless steel) were chosen so that the net thermal conductivity
through the plug and model wall was nearly the same. The overall effect
of the thin wall and large cooling rates was to cause most of the heat
flow to take place in a direction normal to the wall in the model as well
as the plug. The alr space around the plug (see fig. 1l(c)) forces a one-
dimensional heat flow through the constantan disk. After steady temper-
atures have been attained, the total heat flow rate per unit area through
the plug 1s then

O

(8)

EE

g = kg

where ATe 1s the temperature difference across the constantan disk and
Ore  1s the thickness of the constantan disk. This temperature difference
is obtained from the electromotive force appearing across the stalnless-
steel wires to the heat meter. (See fig. 1(c).) The thermoelectric out-
put of the stainless steel and constantan Junctions 1ls known as a function
of temperature from a previous calibration of the same materials.

The serodynemic hest-transfer coefficient is glven by the equation
A h)
h - T—I‘——'l-‘-—( ') (9)

h

where = .18 & factor that corrects for the amount of heat transferred

between the surface of the flange and the airstream and, also, for the
amount of heat conducted into the flange from.the model. Heat transfer
due to radiation is not included in equation (9) since it was negligible
in comparison with the aerodynamic heat transfer. The surface tempera-
ture of the plug Tp' is computed by assuming one-dimenslional heat flow
through the plug and by using the temperature.measured at the inside
surface. The temperature distribution along the surface of the flange

determines the correction factor ﬁ% and depends on the heat-transfer

coefficient end the dimensions and thermal conductivity of the flange as
well as the surface temperatures of the plug and model. The temperature
distribution on the flange may be calculated from a differential equation
which is derived in the appendix. o _ o
The data presented in this report have not been corrected for the
flange effect because of possible experimental errors in the measured
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temperatures Ty and Tp; however, typical values of the correction

Tactor and the effect of various parsmeters on the factor are given in
the appendix.

Values of TP, Ty, and T; are shown for a typical test in fig-
ure 2(d). The temperatures Ty and Ty are measured on the outside
and inside surfaces of the model at the locations indicated in figure 1(c).
Possible errors in these measured temperatures and the derivation of
equation (9) are also given in the appendix.

The physicel constants for the constanten and stainless steel used for
this model were ke = 12.8 Btu/(hr)(ft)(°F) and kgt = 9.3 Btu/(hr) (£t) (°F),
respectively. The stainless steel was type 303, that is, sbout 18 per-
cent chromium and 9 percent nickel. The thermoelectric output of the
particular stainless-steel--constantan combination used in this model is
given in the following table:

Average temperature of Microvolts per
Junctions, OF oF

60 27
80 25
100 ' 24
23
23

120
140

This model was polished before most of the tests; however, several tests
were made without polishing in order to observe the effect on the hest
transfer of the natural-surface sbrasion caused by foreign materisl in
the airstream.

RESUITS AND DISCUSSION

Pregsure Distributlions

The varistion of pressure coefficient Cp with 6 at M= 2.00 for
various stream Reynolds numbers is shown in figure 3. Over the front part
of the sphere the pressure does not vary appreciebly with Reynolds number
and up to about 8 = 60° is closely approximated by the Newtonlan
distribution

2

CP = Cp,o cos—8
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where Cp,o was calculaeted from the average Mach number of the Jet and

the normel shock relstions. On the back of the sphere within the
separated-flow region the Reynolds number has & large effect on the pres-
sure and also on the separastion point.

A comparison of the separstion point obtained from schlieren photo-
graphs of the recovery-temperature model with the separatlion point indi-
cated by the pressure data of figure 3 is shown in figure 4. In general,
the flow separates somewhat farther forward on the recovery-tempersature
model, as shown by the schlieren data, than on the pressure~distribution
model. The different location of the separation points on the two models
is probably caused by the different sting dlameters or some other change
in the flow associated with the particular Jets used for the tests. The
recovery-temperature model has a ratlio of sting diameter to model dismeter
of 0.24 as compared with a ratio of 0.18 for the pressure-distribution
model. (See figs. 1(b) and 1(a).) The schlieren photographs were taken
of the recovery-temperature model in the varigble Mach number closed jet
and the pressure data were cbtalned in the M= 2 open Jet with the nose
of the model 7/8 inch inside the end of the jet. Sample schlieren photo-
graphs at three Reynolds numbers are shown as figure 5 to illustrate the
rearwerd movement of the separation polnt wlth increasing Reynolds number.
The location of sepsration wes assumed to be at the point of intersectlon
of the forward oblique shock with the surface of the sphere.

The pressure distributions obtained on the sphere at M, = 4,15 and

at R, = 6.7 X 106 and 9.1 X 10  are shown in figure 6. The pressure
over the forward part of the model is in good agreement with that calcu-
lated by the Newbtonlan expression almost all the way to the separation
point. This small chenge in Reynolds number hed little effect on the
separation pressure or location. -

Equilibrium and Recovery Tempersatures

Mo, = 4.15.- The thin-wall Inconel model was tested first with a
wall thickness of 1/8 inch at M_ = 4.15. After these tests were com-

pleted, the same model was machined to a wall thickness of 1/16 inch and
more data were obtalned. The results of both series of tests are pre-
sented in figure T where the ratios of the measured equilibrium tempera-
tures to the stagnastion temperatures Te/Td are plotted against stream

Reynolds number R, for values of & from -10° to 145°, On the front
part of the sphere from the stagnation point to about 6 = 35°, there is
little dependence of TgfT, on R, (fig. 7(a)). From sbout 6 = 35°
to 8 = 115° (figs. T(b) to T7(d)), Te/To generally increases with
Reynolds number R,. For 6 > 115° (figs. T7(d) and T7(e)), Te/To 18

about constant when R, > 4.5 X 106. The values of Te/To, are higher
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on the thin-wall model than on the thick-wall model at all values of 8
except in the range of 6 from approximately 90° to 115°. This tempera-
ture reversal is caused by the increased heat conductlion into this region
on the thick-wall model since the minimum temperatures are found here.

Transition occurred at Ry, = 4.5 X 106 at all values of 6 > L5°
as indicated by the sbrupt increase in Tg/T, on the thin-wall model at
this Reynolds number. For values of 6 > 115° and R, < 4.0 X 106, the
measured temperatures on the thick-wall model mey be sbout 1 percent too
low because of insufficient testing time to allow for the extremely low
heating rates in this region.

The data shown in figure T have been extrapolated linearly to zero
wall thickness since, according to the discussion in the section entitled

"Thin-shell models," this procedure 1s permissible if TQ,A_N TW,B and
Dp =~ Dg. The results of the extrapolation are shown in figure 8 where

the ratio of the recovery temperature to the stagnation temperature Tr/To
is plotted sgainst © for three Reynolds numbers. The curves labeled
"laminar theory" and "turbulent theory" were computed from the relation

.ET'E;:n(_EJ.)J,El (10)

(o] TO TO

where 17 = JNp,. for the laminar-flow theory, 1 = lePr for the

turbulent-flow theory, and the Prandtl number was assumed constant at

Npp = 0.7. Just as is shown in figure 7, these data ere almost independ-
ent of R, for 6 < ho°, and at Ry, = 3.0 X lO6 the data are slightly
below the laminsr-theory curve. For 0 > 400, Tr/To at the larger
Reynolds numbers 1s higher than the lsminar data and tends to follow the
trend of the turbulent-theory curve. This behavior indicates that transi-
tion occurred at about 6 = 40° to L45°. Downstream of the separation
point which was between 6 = 90° and 105° (in agreement with the pressure
date of fig. (6)) Tp/To is again independent of R, and increases with
increasing distance around the model. All the data up to 6 = 90° would
be in better agreement with the theory if the laminar-theory and turbulent-
theory curves were reduced sbout 1 percent in order to agree with the data
at 0 = Q9,

Some recovery-temperature data from the heat-meter model are also
shown in figure 8. These data were obtained from figure 9 where the
dimensionless heat-transfer parameter H is plotted against the tempera-
T. -

o]

0 In accordance with a procedure given in the

ture parameter
o
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sectlon entitled "Heat-meter model," the recovery temperatures from this .
figure are computed from the intersection of the faired curves with the
axis H =0 so that the expression for Tpn/Tq is

%;' -1 - <Eo.;_T.u>H_O

To

Note, however, that the surface temperature distribution on the heat-meter
model is such that the conditlon g, = O 1is generally found at only one
point or area on the model during any one test. Thus, in figure 9 the

o -

T T
points to the extreme left (smallest values of -—75——JE> were all obtained
o

in the same test, so that for this test gy~ 0 at 6 = 75° and 90°;

for 6 < T5° the wall temperatures were still considerasbly below recovery
temperatures. According to a qualitative analysis of the effect of wall
temperature distribution on the local recovery temperatures, the recovery
temperatures from figure 9 ghould then be somewhat less than the values

on the thin-waell spheres where for any one test g, =~ O over the entire

model, Comparison of the data in figure 8, however, shows good agreement ’
between the two sets of data at comparsble Reynolds numbers. Apparently,
then, thls effect is too small to be measured in the present tests.

M, = 2.00.~ The ratie of the equilibrium temperature to the stagna-

tion temperature Te/To measured at a stream Mach number of 2.00 1s pre-

sented in figure 10. These data were all obtained on the Inconel model
with a wall thickness of 1/16 inch. On the front part of the sphere the
results are similar to the recovery-temperature date at M, = L4.15 -

(fig. 8) except that for the larger Reynolds numbers (Rm 2 6.45 x 106)
transition epparently occurred somewhet farther forward at 6 = 25° to 30°.

At the lower Reynolds numbers (R°° S 3.49 x 106) transition apparently

occurs shead of 6 = 90° as indicated by the increasing values of Te/To
in the vieinity of 6 = 70° to 80°.

The theoretical curves were computed by use of equation (10) with
the 'same values of 1. The agreement between the data and the theory
would be improved 1f the theoretical values were reduced by about
1/2 percent.

In the separated reglon (fig. 10), Te/T, was essentially constant

with increasing distance around the model but decreased slightly with
increasing Reynolds number. Thils decrease is probably caused by the same
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flow mechanism which caused the corresponding decreese in the pressure
in the separsted region shown in figure 3.

Heat-Transfer Coefficients

Stagnation point.- All the heat-transfer data obtained at the stag-
nation point in this investigstion are shown in figure 11 as a "wall"

Nusselt number %g plotted against a parameter which is the product of
Py Yol

a "wall" Reynolds number Rp =

and the dimensionless velocity

gradient u3¥ evaluated at the stagnation point. The recovery tempera-
tures used to compute h were taken from the data of figures 8 and 10.
The heat-transfer data at M, = 2.0 were obtained on the thick-wall
copper sphere by the transient method, and the data at M, = L.15 were
obtained on the hemisphere-cylinder model with the heat meters. The heat-
meter data are shown uncorrected for any errors caused by the heat trans-
ferred to the flange. Some of the data at M, = 4.15 were obtained with
the hemisphere-cylinder model yawed 15° in order to provide a cross check
of the heat-transfer coefflicients obtained from the different meters.
Comperison of these data shows that the heat meter located at 6 = 15°

in the unyawed position and at 6 = 0° when the model was yawed (see

fig. 1(c)) was indicating heat-transfer rates sbout 10 percent higher than
the meter at 6 = 0° (model unyawed). This discrepancy is probably caused
by constructional variations in the plugs since yawing the model should
have no effect on the heat transfer on the hemispherical nose.

Iines shown in figure 11 labeled "laminar theory" are computed from
the results of reference 9 where it is shown that in the vicinity of the
stagnation point the local Nusselt number divided by the square root of
the local Reynolds number or the quantity

h

e

¥

ig a function only of the Prandtl number and the ratio of wall tempera-
ture to stagnation temperature. If the dimensionless velocity gradient
at the stagnation point ul* is introduced into this quantity, then

1

UD 2
(R
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The values used for._..-l-v-'-N--'E were 0.663 and 0.639, respectively, for

R, .
Tw/To = 1.0 and 0.5 (ref. 9). The values used for u;* were 1.54 for
M, = 2.00 and 1.19 for M, = k.15, as obtained from the pressure-
distribution dats of figures 3 and 6.

The data at M, = 2.00 are in good agreement with the theory but
the data at M, = 4,15 are sbout 12 percent higher than the theory.
Application of & correction for flange effects would reduce these data
at M, = L4.15 by 15 to 25 percent; this reduction depends on the plug
and wall temperatures and flange thickness, as discussed in the appendix.
Apparently, then, the corrected data at M = 4.15 would be samewhat
lower than the theory by an amount which is well within the uncertaintiles
due to flange correction and constructlonal variestions in the plugs. No
effect of a variation in T /T, as indicated by the theory could be
detected in the data.

Veriation of heat-transfer coefficients with 06 at M, = 2.00.-

The heat-transfer coefficlents on the copper sphere at M, = 2.00 are
presented in figure 12 as the ratio of the local heat-transfer coefficient
to the value at the stagnation point. The local heat-transfer retes were
calculated from the experimental temperature-time histories by using equa-
tion (l), and the recovery temperatures were cdbtained from the experi-
mental data of figure 10.

The large increases in heat transfer occurring on the fromt part of
the sphere and reaching & maximum at sbout 0 = 4O° (fig. 12) are evi-
dently caused by transition to turbulent flow, since the hest-transfer
coefficlents at the stagnation point are in asgreement with laminar theory
(fig. 11). Also, if the boundary layer were entirely laminar, the heat
transfer would be expected to decrease with increasing © as shown in
previous investigations. (See, for example, refs. 4 and 8.)

The heat-transfer distribution for ea laminar boundary layer, as shown
in figure 12, was computed from the method of reference 11 by use of
Mengler's transformetion (ref. 12). Comparison of the theory with the
experimental data shows reasonably good agreement from the stagnation
point up to the reglon of 6 = 10° to 30° where large increages in h
occurred. This value of 8 i1s presumably the location for the beglinning
of transition and is subsequently referred to as 6m.
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The theoretical heat-transfer distribution in s turbulent boundery
layer was computed by using & modification of Falkner's expression
(ref. 13) for the skin friction on & flat plate glven by the equation

Ty - 0.0131
oy

and Reynolds analogy in the form

T
"7%%?‘ =12 —5
Pty P Pyt

where the gas properties are evaluated at the local wall temperature and
local pressure. (Skin-friction coefficients and Reynolds anslogy from
these formulas are compared with recent experimentsl dats on flat plates
at supersonic speeds in refs. 14 and 15.) The resulting expression for
the heat-transfer coefficient is

_ Ry
h = 0.0157 E;;;;;§§7$ (12)

My

Combining equetion (12) with the expression for the laminar heat-transfer
coefficlent at the stagnation point obtained from equation (11) and
assuming constant T, gives the equation

p w\O/T 5/14
h _ 0.0157 Npr \P1,0 Uy (p UcoD)

RGN

(13)

x=0

which was used to compute the long-short-dash curves in figure 12 labeled
"local flat plate (turbulent theory)." The local values of pressure and
velocity were cbtained from the measured pressure distributions of fig-
ure 3 and x was measured from the stagnation point. The two curves

shown were computed for Rp = 11 X 106 and 19 X 106 which are the
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approximate limits of this parameter for the tests. Comparison of the
experimental data with the theory indicates that equation (13) predicts
the correct variation of the heat trensfer with 6 from 6 = L0O° to 90°.
The predicted magnitude of the heat transfer on this portion of the
model is generally conservative., The experimentasl values are as much

as 20 percent below the computed values except for the test at

Ry = 2.Th X 106 where the data are as much as 40 percent below the
theory. The agreement between the experimental data and the theory
indicates that, within the experimental scatter of the present data,

the simple flat-plate formulas glven by equetion (12) predict the tur-
bulent heat transfer on spheres wlth reasonsble accuracy. No consistent
trend caused by changes in Rp or TW/TO is evident in the data. The
experimental scatter in the datae is probably masking eny such effects
over the small range of Reynolds number and tempersture avalleble in
these tests. The heat-transfer coefficlents in the separated region

on the back of the sphere are about 12 percent of the peak turbulent
values.

Heat-transfer coefficients at M, = 4.15.- The experimental heat-
transfer coefficients on the hemisphere-cylinder model at M, = k.15
are presented in figure 13 in the form of the wall Nusselt number divided
by the square root of the well Reynolds number. This particulesr param-
eter was used here rather than h/hg_q 1In order to correlate the laminar
hest-transfer data and, also, to facilitate comperison with other experi-
mental and theoretical investigations, such as those of references k4
and 9. The heat-transfer rates were obtained directly from the heat-
meter readings by means of equation (8) with no correction included for
flange effects. (See the appendix for a discussion of these corrections. )
The recovery temperastures were obtained from the data of figure 8 and
the local flow quantities were computed from the pressure distributions
of figure 6 and the measured wall temperatures. Each data point shown
in figure 13 is the arithmetic average of the values obtained from the
number of tests indicated in the key. -

The curves shown 1n figure 13 for the heat transfer in a laminar
boundary leyer were obtalned by computing the varistlion in heat transfer
around the sphere by the method of reference 11 end applylng a correction
to these results in order to bring the stagnation-point value into agree-
ment with the theory of reference 9. The local flow quantities needed
in this calculation were computed from the experimental pressure-
distribution data of figure 6.
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The theoretical distribution of the laminar heat-transfer parameter
hx/kapwulx/uw in a turbulent boundary layer 1s cobtained from equation (12)
and 1s given by the relation

5/1k 5/1k
hx ulp lx pwulx)

———— = (0.0157) Np,.|——m—o
kw’nwulx ) (urpax), Py
Hyr

for T, = Tyw,2- The subscript 2 denotes quantities evaluated at any
convenient reference point which in this case ig taken at 8 = 90°.

2

The data of figure 13 have been divided into two sets according to
the condition of the model surface during the tests. One set of dats was
obtalned when the model was carefully polished before each test. These
data are designated by the open symbols in figure 13 and are considered
representative of a "smooth" surface. The other set of data, designated
by the solid symbols, was obtained when no sttempt was made to keep the
model polished and are considered representative of a “rough" surface.
This latter procedure resulted in a considerably rougher model surface
than the former procedure because of the cumulstive effect during the
tests of the natural abrasion caused by foreign material in the alrstream.

In figure 13 & comparison of the data for a smooth surface (model
polished before each test) with the laminar theory indicates that, when

Ry s 3.3 X 106, the data are sbout 15 to 30 percent higher than the theory
but tend to decrease with increasing 6 by sbout the same smount as the

theory. For R, = 4.9 X 106, however, the values of the heat-transfer
parameter at 6 = 450, 60°, and 75° are from 50 to 200 percent greater
then the laminar theory and tend to approach the level predicted by the
turbulent theory. Apparently, transition from laminsr to turbulent
boundary layer occurred between 6 = 30° and 45° at the lerger Reynolds
number. Note that alternate meters are located on opposite sides of the
model (fig. 1(c)) so that if turbulent flow existed on one side of the
model only, then alternste meters would indicate higher heat transfer.

The data for the rough surface (model unpolished) are, in general,
higher than the other data in figure 13 except at 6 = 0° and 15°, At
8 = 309, 459, and 75° for the lowest Reynolds number, these data are
about 15 percent higher than the corresponding data from the smooth sur-
face. As the Reynolds number is increased, the heat transfer tends to
get progressively larger for all values of 6 2 30° and approaches the
levels predicted by the turbulent theory. The data at 6 = 90° are, in
general, below the turbulent theory. Thils may be attributed to two factors.
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One of the factors 1s thet the meter at 6 = 90° is not exposed to ero-
slon effects to the same extent es the other meters and, hence, the local
surface would not be as rough. Also, the small measured values of the
heat-transfer rates at 6 = 909, as shown for typical conditions in fig-
ure 9, result in larger errors in the heat-transfer coefficient at this
location since the Ingtrumentation errors, as discussed in the appendix,
would have a larger effect.

Application of e flange correction (see the appendix) would reduce
all these data by 15 to 25 percent. This correction would bring the
smooth-gurface deta et the smaller Reynolds numbers into good agreement
with the laminer theory. The higher values of the heat transfer on the
rough surface would be within the upper and lower limits of the turbulent
theory. Evidently all other values of the heat trensfer are in the
transitional range. If the larger experimental values are for a fully
turbulent boundary leyer, then the flat-plate formules agein predict con-
servative values of the heat transfer.

Typlcal values of heat-tranasfer rates obtained on the hemlsphere-

cylinder model at R, = 3.3 X 106 and M, = 4.15 are shown in figure 9.

In order to correlate the date for a laminer boundery leyer, the dimen-

;ionlﬁss parameter H 1is plotted agealnst the temperature parsmeter

—£%§L—Ji. The slope of the falred lines would be the local stream Nusselt
8]

nunber divided by the square root of the stream Reynolds number, and the

T, -T
value of the temperature parsmeter when g = O would be —QT———E. The
o

relative scatter at 0 = 60°, 75°, and 90° 1is greater than at 8 = 0°,
15°, 30°, and 45°. This 1s probably caused by the greater sensitivity

of the flow to surface roughness at the rearwerd statlons. The heat-
transfer-coefficient date presented in flgures 11 and 13 were not derived
from plots of the type shown in figure 9 since & larger number of tests
at a glven Reynolds number is then required in order to evaluate the
Nugselt number.

Effect of Roughness on Transition

The quantitative effect of roughness on transition cannot be deter-
mined from the present tests since no attempt was made to measure or éon-
trol the actual roughness. Some qualitative informetion may be gained
from the tests, however, by calculeting displacement and momentum thick~
nesses for comparison with the possible roughness present. Also, momentum-
thickness Reynolds numbers at transition maey be useful for camparison with
other data.
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The displacement and momentum thicknesses of the laminar boundary
layer on a sphere have been calculated by the method of reference 16 by
use of the experimental pressure distributions of figures 3 end 6. The
displacement thickness times the square root of the wall Reynolds number
was found to be almost constent over the flrst 50° of the sphere; that

is,
U
% ’p‘*"""D ~ 0.5
Hsr x=0

for 8 < 30° and for the range of Mach nunbers end wall temperstures of
the present tests. For the maximum Reynolds number range and the diam-
eters gpplying to the heat-transfer tests at Mach numbers 2.00 and L.15,
the minimum value of &% 1s gbout 0.0003 inch and the maximum vslue is
about 0.0005 inch on both sets of tests. These small values indicate
that very small roughness heights of the order of 0.0002 inch would reduce
conslderably the transition Reynolds numbers if correlations obtained at
low speed (ref. 1T) of the effect of roughness can be applied to the
subsonic flow region on the sphere. Observations made of the sbrasion
damage to the surface of the various models indicated thaet, in spite of
polishing before the tests, at least this amount of roughness was present
after the tests. The relative damage to the models was, in general, the
greatest on the copper model and the least on the Inconel recovery-
temperature models.

The Reynolds numbers for transition based on the local momentum
thickness 6% and the local flow quantities at the edge of the boundery
layer are plotted against angular distance around the model in figure 1L
for all the date obtained in this investigation. The location of transi-
tlon was arbitrarily taken as the point where the heat-transfer coefficient
or recovery temperature first began to increase from the nominal laminar
values. Figure 1k ghows that most of the date from the heat-transfer
models with the rough surface (model unpolished) at M, = 2.00 and at
M, = .15 are lower than the rest of the data and correlste approximately
on one line. TFor these particular tests, this line apparently represents
& minimum critical Reynolds number below which the flow was leminar. The
dete &bove this line are, in general, from the polished-model date at
M, = 4,15 and from the data for the recovery-temperature models. The
two points plotted at 6 = 90° are from the smooth-surface model for

R, = 3.3 X 107 and are included to show that transition occurred down-

stream of 8 = 90° for these conditions. All the data indicate that
Re*,T tends to increase with increasing 6.
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CONCLUDING REMARKS

An investigation was made of the pressure and equilibrium-temperature
distributions on a sphere at Mach nunbers of 2.00 and 4.15. The local
aerodynemic heat transfer was also measured on a sphere at Mach num-
ber 2.00 and on & hemisphere-cylinder at Mach number L.15. The maximum

Reynolds number range for these tests was from 1.5 X 106 to 8.1 x 106,
basged on free-stream conditions and the diameter of the sphere.

The pressure dlstributions on the front part of the sphere were
independent of the Reynolds number and In good agreement wilth the theo-
retlcal Newtonian distributions at both Mach numbers. At the lower Mach
number the location of separation and the pressures in the separated-flow
reglon were affected by the Reynolds number. '

The equilibrium temperatures on the front part of the sphere at both
Mech numbers were gbout 1 percent lower then those predlcted by a simple
theory which assumes that the local recovery factor (defined in terms of
the local static temperature) is the square root of the Prandtl number
for laminar flow and the cube root of the Prandil number for turbulent
flow. The date at the lower Reynolds numbers agreed with the trend given
by the theory for laminer flow. As the Reynolds number was lncreasged,
the temperatures tended to lncrease and agreed more closely with the
theory for turbulent flow.

Downstream from the separation point the recovery temperatures for
the tests at Mach number 4,15 increased with increasing distance around
the sphere and were practicelly independent of Reynolds number. At Mach
number 2.00 the equilibrium temperstures were more nesrly constant in the
separsted-flow region and decreased slightly with increasing Reynolds
number. '

The heat-transfer coefficients at the stagnation point from the
tests at both Mach numbers were in good agreement with the theory of
Reshotko and Cohen (NACA Technical Note 3513). The veloclty gradients
used in the theory were evaluated from the experimental pressure data.

The local heat-transfer coefficlents from the tests at Mach num-
ber 2.00 were 1n agreement with the theory for laminsr flow in the region
up to approximately 20° from the stagnation point. Large increases in
heat-transfer coefficlent caused by transition to turbulent flow occurred
beyond this region with the maximum values observed at sbout 40° from the
stagnation point. From this location back to the separestion polnt the
approximate level in the heat-transfer coefficient as well as the varia-
tion with distance was falrly well predicted by a simple theory based on
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turbulent heat-transfer formulas for flat plates. The heat-transfer
coefficients in the separated-flow reglon were gbout 12 percent of the
pesk turbulent values on the front part of the sphere.

The heat-transfer coefficients from the tests at Mach number L.15
at the higher Reynolds numbers were generally similar to the results at
Mach number 2.00, except that transition usually occurred farther back
on the nose. The maximum values of the heat-transfer coefficient down-
stream of transition were again in reasonably good agreement with the
simple turbulent-flow theory. For Reynolds numbers of about 3.0 X 106
or less, the data over the entire hemlspherical nose were in agreement
with the theory for laminer flow,

Lengley Aeronsutical Leboratory,
National Advisory Committee for Aeronsutics,
langley Field, Va., August 6, 1957.



28 NACA TN 4125

APPENDIX

HEAT-METER CORRECTIONS

The largest error in the heat-meter date ls caused by heat conductlon
in the metal flenge which bridges the gap between the plug and the model
(fig. 1(c)). The external surface of this flange is exposed to approxi-
mately the same unlt heat-transfer rates as the plug and model surface.
The insuleting properties of the elr gep force this heat to flow into the
plug or the surrounding model. The actual quantity of heat conducted
into the plug from the flange depends on the temperature distribution in
the flange and the temperatures of the plug end model. The Indicated heat-
transfer rate as obtained directly from the temperature drop across the
constantan digk 1s then corrected by an amount whlch depends essentially
on the difference 1n the actual surface area involved 1In the total heat
flux through the plug and the projected ares of the disgk.

Ratio of Corrected to Indicated Heat-Transfer Coefficlents

A section of g heat meter with symbolic notations 1s shown in
sketch 1:

c +—~1h—+ﬂ
7 _l_ TP :__ZP
W T2
Ty
|
T
Ty 1
i
Sketeh 1

The total heat Q flowlng per unit time through the constantan disk of
thickness Ar, 1s the sum of Qp into the surfeace area of the plug
(the projected area of the constenten disk) and Qp conducted in from
the flange; that is,

% = p + 9 - (s2)
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where
@ = Ko = 11 |
= — X
Ar, TP
2
Q = (T - Tp)xly T (82)
4aT
=k (—-) 2xl. e
O st\d7 Z=Zp P
The tempersture gradient g% is assumed constant across the flange
thickness €.

An "indicated" heat-transfer coefficient is defined as

e
ht! = __g(._‘._ (AB)
T, - Tyt

where TP' is the surface temperature of the plug, which is calculated by
assuming one-dimensional heat flow through the entire plug. The ratio of

the indicated heat-transfer coefficient to the true value is then obtained
by combining equations (Al), (A2), and (A3). This ratio is

T, -T
h! T Pl+2

2
nt_Te-Tp| .2 % afr ()
h o Tp - Tp' %o 1 _ o dZ(Tr)z=zp
T,

where

h
= 1
X.P ks te P

From the notation shown in sketch 1 and the assumption of one-
dimensional ‘heat flow, the value of TP' is given by the relation

: ke Ary +Arp
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where Ale = Tp - Ti3. A more accurate value of Tp mey be camputed from
equation (AL) by assuming that

n = .Q;'P o ks‘t(TP - Ta) (A6)
(Tr - Tp)nlpz Ara(Tr - Tp)

end by substituting equation (A3) for h'. The result is

k., Ar
T, = Tp + S —2 AT & (A7)
P kst o] €A
where o
2 b ayr
A=1 o+ 5 —[= (A8)
2 T d1\T
% 1~ 2 P =1y
Tr
and from sketch 1
k. Ar

Subtracting equation (A7) from equation (A5) and using equation (AS) then
glves

k. Ar
'L = c —2(; .1
TP TP AT, Kor 8 (l 7\) (A10)

Adding (T - Tp') to both sides of equation (Al0) and using equation (A3)
for AT, results in the expression

T.~T Ar
TP o1, __2.(1 - :—1=>h' (A11)
Tp - Tp' Ko A
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The correction factor is calculated from equations (Ah) end (Al11)

==

for known values of h' and A, An iterastive procedure is necessary

since A 1is a funetion of h and %E.
r

Temperature Distribution on the Flange

The temperature gradient %% at the inside edge of the flange

depends on the quantity of heat transferred to the flange from the alr-
stream and the surrounding model as well as the thermal conductivity of
the flange and its dimensions. These effects may be approximately
accounted for by writing the heat balance for an element of the flange

of width di? and assuming a constant temperature across the thickness €
of the flange. The heat-transfer coefficient h and the recovery temper-
ature T, are assumed constant throughout. The resulting differential

equation is

2
Lo dgl ) 2o o) -0 e

with the boundary conditions of

1=1 T="mT
° P (A13)
1= 1 T = Ty
Introducing the independent varisble
h
X = 1
kste
into equation (A12) results in
& i +-l-i(T -7)- (T -T)=0 (Alk)
2(1” ) X ax\'t ) r

ax
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wvhich has the general solution -
E! = 1 - C1Ig(X) - CoKp(X) (A15) .
r

where Ig and Ko are modiflied Bessel functions of the first and second
kind of order zero eand C; and Cp sare arbitrary constants chosen to

satisfy the boundsry conditions (egs. (A13)). Note that these boundary
conditions imply a discontinuity in temperature gradient at the edges of

the flange since %% =0 for ZP > 1> 1, end no boundary conditions
for the values of %2 on the flange are imposed. It is believed, there-

fore, that the results obtelned by using the boundary conditlons

(egs. (Al3)) are conservative since the physical requirement of a con~-
tinuous temperature gradient would tend to reduce the temperature gradlent
gt the inside edge of the flange and, thereby, to decrease the quantity

of heat conducted into the plug from the flange. -
The temperature gradient as obtained from equation (Al5) is
/T %
(= = -CqI + CoK A6
dz(Tr)z=zp IP{_ i) + o) (8)

where Il and Kl are modified Bessel functions of the first and second
kind of order one. The quantity A then becomes T

A=1+ X:(——E:-)[-Clll(xp) + czKl(xp)] (A17)

T

T - T
The reciprocal of A is plotted agalnst E;;ﬂ-7fa in figure 15 for typical
values of %p. r - P

- t
, and EE;__EE_
e 'p Ty - Tp'

in figure 2(d) are given in the following table:

Values of h', XP from the test shown
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@ ® | ® o ® | @ ® |0

ht -t L |Zx-T | n T, - T
o of R O e I L I
deg{ in. |——2 X' % - Tp' (Fig. 15 (Bq (Bq. |Tr - Tp' [ B’

(sec) (££2) (°F) col?nd®) (A1) |(a18))

15]0.006 0.0543 1.068] 0.034 0.63 1.018 0.619( 0.018 |[0.7T1

15} .003 L0543 1.510{ .03%4 T3 1.013 . T20 .018 .78
45] .006 0375 .887| .02k .63 1.012 .623 .013 .TL
75| .006 .01l .549] .015 .5% 1.006 .527] .00k < Th

The corresponding values of A (obtained from fig. 15 and column (B)),

T. - T
TE——1fE7 (from eq. (All)), and ﬁ% from the equation
r~ °p

= —_— 8
I (A18)
Ty - Tp'

(obtained from egs. (Ak), (A8), and (A1l)) are also shown in the table.

The values of ﬁ% in colum (z) are actually the first approximstion in

an iterative procedure since h' and TP' were used to obtaln the values
of A. The final results, of course, depend directly on the accuracy of
the surface temperatures of the plug and model wall. It is belleved that
the measured values of T, (as shown for this example in fig. 2(d) and
used in column QD) are too large because of the type of thermocouple
instellation, which was described in the section entitled "Hemisphere-
cylinder heat-transfer model." The magnitude of this error can be esti-
mated by assuming one-dimensional heat flow through the model wall of
thickness Arp. The relation for the outside-wall temperature T
(assuming h = h') is then

T +-EEE h'T
1 kst ¥
L' =

Ar
1L +—Ln

kgt
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which was used to compute the values shown in column QD. These esti-

mated values were then used to compute a new set of values for %T given
in column (). For this particular test, then, the correctlon factor ﬁ%
varied from about 0.53% to 0.78.

In view of these possible errors in T, and T, and the conserva-
tive effect of the boundery conditions (egs. (Al3)), the correction factors
shown in columm GD are believed to be somewhat small. Consideration of
all pertinent effects indicates that most of the heat-meter data in this
report should be multiplied by a correction factor of 0.8 with a probable
uncertainty of £10 percent. However, when h 1is small, as at 0 = 90°
on the hemisphere, the values of ¥Xp are small and larger correction
factors may be required. It was ilmpractical to attempt to apply a cor-
rection to all the data because of possible unknown errors in Ty, Tp,
and €. - :
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4 Internal thermocouples
iocated as shown

020 0D.
ceramic tube

010 Constanten wire

Silver solder

Thermocouple detail {X8)

(a) Ysothermal heat-transfer model.

Plgure 1.- Sketches of models and ingtrumentation used in the inveatigation. All dimensions are
in inches unless otherwise indicated.
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Section A-A

High temp. silver
solder at assembly

0I0 Iran-constantan
thermocouple wire

[
Typical thermocouple installation
{no scale)

(b) Equilibrium-tempersture model.

Flgure 1.- Continued.

Section B-B
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Silver solder
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A =

Air space
Insulating cement

Enlarged section of
heat meter

(e¢) Hemisphere-cylinder heat-transfer model snd hest meter.

Figure l.- Concluded.
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(a) Recorded temperature varistlon with time on the inside and outeide surfaces at about the

seme O station. M, = 2.0; p, = 98 1b/sq in. abs; T, = 4920 F; R_ = 3.k x 10° (rough
surface) .

Figure 2.~ Temperature distributions on the heat-transfer models foé typical tests.
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the records.

the outside surface.

8, deg

(b) Temperature-time history of the copper sphere as read directly from

Flagged symbols denote temperatures measured at the
inside surface; all other values are measured about 0.05 inch from

M, = 2.0; po = 98 1b/sq in. abs; Ty = 492° F;

R, = 3.k X 10° (rough surface).
120 Adjusted
. W1t time, sec
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(c) Temperature time history of the copper sphere for the same test
shown in figure 2(a) but corrected for the effect of thermocouple

depth.

Figure 2.~ Continued.
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(@) Temperature distribution on the inside and outside surfaces of the hemig

meter model.
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M, = 4.15; p, = 324 1b/sq in. abs; T, = 241° F; R,

Figure 2.~ Concluded.
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Figure 3.~ Distribution of the pressure coefficient around the sphere
at M = 2.00 for various stream Reynolds numbers.
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Figure k.- Variation of the separation point with stream Reynolds number on o of the models

at M = 2.0.
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6

R, = 5.16 X 10 R, = 8.13 X 106
L-37-2730
Figure 5.- Schlieren photograephs of the recovery-temperature model at
M, = 2.0 and three stream Reynolds numbers.
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Figure 6.~ Distribution of the pressure coefficient around the sphere
et M, = L.15 for two stream Reynolds numbers.
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Figure 7.~ Variation with stream Reynolds number of the ratio of the
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(e) © = 75° to 105°.

Figure 7.~ Continued.
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(d) 6 = 110° to 125°,

Figure 7.~ Continued.
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(e) 6 = 130° to 145°.

Figure T7.- Concluded.
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